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S1. Simulation Details for Models in the Main Text 

S1-A: Spin-Boson Model 

The Hamiltonian for the spin-boson model reads 
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where   and   represent the energy bias and the tunneling between states 1  and 2 , 

respectively. (We set 1=  throughout the Supporting Information.) The operators  ˆ ˆ,j jP R  

denote the mass-weighted momentum and coordinate of the j-th harmonic oscillator for the bath. 

The frequencies  j  and the coupling coefficients  jc  are typically obtained by discretizing a 

given spectral density function. In this Perspective, we use the discretization scheme proposed in 

refs 1, 2 for the Ohmic spectral density ( ) ( )exp /
2

cJ


   = −  with the Kondo parameter   

and the cut-off frequency c , which results in the following expressions: 
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We employ four specific spin-boson models with 1 =  =  at low temperature ( 5 = ) of ref 3, 

which range from weak to strong system-bath coupling (small to large  ) and from low to high 

cut-off frequency c . Three hundred bath DOFs produced by eq (S2) are involved for 

guaranteeing full convergence. The initially occupied state is selected as the higher-level state 1 , 

while the bath DOFs are sampled from the corresponding Wigner distribution 
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with ( )
( )tanh / 2

2
Q







=  as the quantum corrector4. We investigate the dynamics of the 

electronic reduced density matrix, where the population difference ( ) ( )1 1 1 2( )D t P t P t→ →= −  and 

the modulus of the off-diagonal term ( )12 t  are demonstrated.  The exact results produced by 

extended HEOM (eHEOM)5, 6 are taken from our previous work3.  

S1-B: Seven-Site Model for the FMO Monomer 

The Fenna-Matthews-Olson (FMO) monomer is modeled as a 7-state site-exciton model. The 

total Hamiltonian of the site-exciton model is divided into three parts: the exciton part ˆ
SH , the 

environment bath part ˆ
BH  and the linear coupling term ˆ

S BH − : 
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Similar to spin-boson models, the bath frequencies and system-bath coupling coefficients are 

determined by discretizing the spectral density. We employ the Debye spectral density 

( ) ( )2 22 /c cJ     = +  for each state, where   and c  denote the bath reorganization energy 
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and the characteristic frequency, respectively.  The corresponding discretization scheme from refs 

7-9 is 

 
( )

tan , 1,
2

,
2 1

j c

b

b

j
j

N
N

 
 

 
= − = + 

 , (S8) 

 
2

, 1,
1

,j bj

b

c j N
N


= =

+
 . (S9) 

The system Hamiltonian of the FMO model reads  
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The bath reorganization energy is 
135 cm −=  and the characteristic frequency is 

1106.14 cmc
−= . The number of bath DOFs for each site is chosen as 50.  We investigate a 

challenging temperature 77KT =  as studied in our previous work10. The first site of the system is 

initially occupied, and the bath DOFs are sampled from the Wigner distributions of the 

corresponding harmonic oscillators. The dynamics of both population and coherence terms (i.e., 

the diagonal and off-diagonal elements of the electronic reduced density matrix) are demonstrated.  

Numerical exact results are produced by HEOM. 

S1-C: Atom-In-Cavity Models 

The total Hamiltonian for the atom-in-cavity models can be decomposed into three parts.  The 

hydrogen atom is described by F atomic energy levels: 
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where n  is the atomic energy level of the n-th atomic state. The optical field part reads 
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where ˆ ˆ, ,j j jR P   denote the canonical coordinate, canonical momentum, and frequency of the j -

th optical field mode, respectively.  The coupling term between the atom and the optical field can 

be expressed using the dipole approximation11 as 
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Here, nm  represents the transitional dipole moment between the n -th and m -th states, and the 

atom-optical field interaction reads 
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where L , 0  and 0r  denote the volume length of the cavity, the vacuum permittivity, and the 

location of the atom, respectively. We set 236200L =  a.u. and 0 / 2r L= . Four hundred standing-

wave modes are employed for the optical field, where the frequency of the j -th mode is 

/j j c L = . (Here 137.036c =  a.u. is the light speed in vacuum).  We employ a three-state 

model with the energy levels 1 0.6738 = − , 2 0.2798 = − , 3 0.1547 = − , and the dipole moments 

12 1.034 = − , 23 2.536 = −  (all in atomic units). A reduced two-state case that retains the two 

lowest atomic states is also investigated. At the beginning, the atom is in the highest atomic state, 
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and each optical field mode is in the corresponding optical vacuum state, whose Wigner 

distribution reads 

 ( ) ( )2 2, exp , ,/ 1,W j jj jj jP j NRR P  − + = 
 

 , (S15) 

The exact results produced by truncated configuration interaction calculations are available in refs 

12, 13. 

S1-D: Singlet-Fission Model 

The singlet-fission (SF) model utilized in the Perspective is a three-state site-exciton model 

with the Debye spectral density. This model contains the high-energy singlet state (S1), the charge-

transfer state (CT), and the multi-exciton state that will subsequently split into the double triplets 

(TT). The system Hamiltonian reads14, 15, 

 

0.2 0.05 0 S1

ˆ 0.05 0.3 0.05  eV    CT

0 0.05 0 TT

SH

− 
 

= − − 
 − 

 . (S16) 

The bath reorganization energy is 0.1 eV =  and the characteristic frequency is 0.18 eVc = . 

The number of bath modes is chosen as 200 for each state. The system is initially in the S1 state. 

The nuclear DOFs are sampled from the Wigner distributions of the corresponding harmonic 

oscillators at 300 K.  We employ HEOM to obtain numerically exact results. 

S1-E: Gas Phase Models with One Nuclear Degree of Freedom 

We first test the three anharmonic 3-state photodissociation models of Miller and coworkers 

16. These models are composed of Morse potential energy surfaces and Gaussian coupling terms: 
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The parameters taken from ref 16 are listed in Table S1: 

Table S1：Parameters of 3-State Photodissociation Models16 

Parameters Model 1 Model 2 Model 3 

1 2 3, ,C C C  0.00, 0.01, 0.006 0.00, 0.01, 0.02 0.02, 0.00, 0.02 

1 2 3, ,D D D  0.003, 0.004, 0.003 0.020, 0.010, 0.003 0.020, 0.020, 0.003 

1 2 3, ,R R R  5.0, 4.0, 6.0 4.5, 4.0, 4.4 4.0, 4.5, 6.0 

1 2 3, ,    0.65, 0.60, 0.65 0.65, 0.40, 0.65 0.40, 0.65, 0.65 

12 23 31, ,A A A  0.002, 0.002, 0.0 0.005, 0.0, 0.005 0.005, 0.0, 0.005 

12 23 31, ,R R R  3.40, 4.80, 0.00 3.66, 0.00, 3.34 3.40, 0.00, 4.97 

12 23 31, ,    16.0, 16.0, 0.0 32.0, 0.0, 32.0 32.0, 0.0, 32.0 

eR  2.9 3.3 2.1 

 

The system is initially occupied in the first diabatic state, and the nuclear DOF is sampled from 

the Wigner distribution of the ground state: 

 
2 2( ) /

( , ) em R R P m

W R P e
  − − −

  , (S18) 

where 20000m =  a.u. is the mass of the nuclear DOF, 0.005 =  a.u. is the vibrational frequency 

of the ground state, and the center eR  is also listed in Table S1. Note that R  stands for the chemical 

bond length, implying that it should be positive-definite. 
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The three Tully models17 in the diabatic representation are described as follows.  The single 

avoided crossing (SAC) model reads 
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with 0.01,  1.6,  0.005A B C= = =  and 1.0D = .  The dual avoided crossing (DAC) model reads 
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with 0.1,  0.28,  0.015,  0.06A B C D= = = =  and 0 0.05E = .  The extended coupling region (ECR) 

model reads 
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with 00.9,  0.1,  0.0006B C E= = = − , and ( )h R  denotes the Heaviside function.  The system with 

mass 2000m =  a.u. is initially occupied in the electronic ground state in the adiabatic 

representation with the nuclear wavefunction 
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whose corresponding Wigner distribution reads 
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The center of the wavefunction, 0R , for SAC, DAC, and ECR models is set to -3.8, -10, and -13, 

respectively. The width parameter 1 =  while the initial momentum is 0P .  

In addition to Tully models, an asymmetric SAC model is also considered in the Perspective. 

Such a model was tested in refs 18, 19, where the diabatic potential matrix elements read 
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Here we use 1 20.04,  =0.01, 1.0,  0.005,  1.0A A B C D= = = =  and 0.7Q =  as chosen in ref 19. The 

nuclear mass is set to 1980 a.u. The initial conditions for the asymmetric SAC model are identical 

to those of Tully models (eq (S22)), except that 0 5R = −  and 0.25 = . 

The diabatic population dynamics of 3-state photodissociation models and the scattering 

probabilities of each channel in the adiabatic representation for the Tully models as well as the 

asymmetric SAC model are investigated.  In addition, we investigate the nuclear momentum 

distribution.  For trajectory-based dynamics methods, the nuclear momentum distribution can be 

described by the time correlation function 
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where ̂  stands for the (Hermitian) initial density.  Eq (S25) requires a Fourier transformation for 

the time correlation function ( )
ˆ ˆ ˆ

ˆTr, iHt iPs iHte eC s t e −=    .  To smooth the momentum distribution 

curves, we introduce a Gaussian damping term, ( )2exp as−  with the damping factor a , for the 

Fourier transformation. We set 0.05a =  a.u. for the 3-state photodissociation models and 0.01a =  

a.u. for the Tully models and the asymmetric SAC model.   

All exact results for the gas phase models with one nuclear DOF are produced by Discrete 

Value Representation (DVR)20. The results of the 3-state photodissociation models are 

demonstrated in Figure 5 of the main text, while those of the Tully models and the asymmetric 

SAC model are presented in Figures S1-S4 of Section S2. 

S1-F: Linear Vibronic Coupling Models 

The Hamiltonian of the linear vibronic coupling model (LVCM) in the diabatic representation 

reads 

 ( ) ( ) ( )2 2

1 1 1 1

ˆ ˆ ˆ ˆˆ
2

N F N F N
n nm

k k n k k k k

k n k n k

k

m

H P R E R n n R n m



= = =  =

   
= + + + +   

   
     ,(S26) 

where ˆ
kP  and ˆ

kR  ( )1,...,k N=  are dimensionless weighted normal-mode momentum and 

coordinate of the k-th nuclear DOF, respectively, with the corresponding frequency k .  nE  

( )1,...,n F=  represents the vertical excitation energy of the n-th state.  
( )n

k  and 
( )nm

k  are linear 

coupling terms of the k-th nuclear DOF for the corresponding diagonal and off-diagonal 

Hamiltonian elements, respectively.  
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We first employ two typical 2-state LVCMs for pyrazine—the 3-mode model of Schneiders 

and Domcke21 and the 24-mode model of Krempl et al22. The non-zero parameters of these two 

models are listed in Tables S2 and S3.  

 

Table S2. Parameters of 3-mode LVCM of Pyrazine (Unit: eV)21 

1E , 2E  3.94, 4.84 

( )1

1 , 
( )1

2 , 
( )2

1 , 
( )2

2  0.037, -0.105, -0.254, 0.149 

( )12

3  0.262 

1 , 2 , 3  0.126, 0.074, 0.118 

 

Table S3. Parameters of 24-mode LVCM of Pyrazine (Unit: eV)22 

1E , 2E  -0.4617, 0.4617 

( )12

1  0.1825 

 

Mode   ( )1  
( )2  

1 0.0936   

2 0.074 -0.0964 0.1194 

3 0.1273 0.0470 0.2012 

4 0.1568 0.1594 0.0484 

5 0.1347 0.0308 -0.0308 

6 0.3431 0.0782 -0.0782 

7 0.1157 0.0261 -0.0261 
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8 0.3242 0.0717 -0.0717 

9 0.3621 0.0780 -0.0780 

10 0.2673 0.0560 -0.0560 

11 0.3052 0.0625 -0.0625 

12 0.0968 0.0188 -0.0188 

13 0.0589 0.0112 -0.0112 

14 0.0400 0.0069 -0.0069 

15 0.1726 0.0265 -0.0265 

16 0.2863 0.0433 -0.0433 

17 0.2484 0.0361 -0.0361 

18 0.1536 0.0210 -0.0210 

19 0.2105 0.0281 -0.0281 

20 0.0778 0.0102 -0.0102 

21 0.2294 0.0284 -0.0284 

22 0.1915 0.0196 -0.0196 

23 0.4000 0.0306 -0.0306 

24 0.3810 0.0269 -0.0269 

 

 

We also test the LVCM proposed by Worth and coworkers23 in the Perspective.  The model 

includes 2 nuclear normal modes and 3 electronic states to describe the dynamics of Cr(CO)5 

through a Jahn–Teller conical intersection after photodissociation. The non-zero parameters for 

this model are listed in Table S4. 
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Table S4. Parameters of 2-mode LVCM of Cr(CO)5 (Unit: eV)23 

1E , 2E , 3E  0.0424, 0.0424, 0.4344 

( )1

2 , 
( )2

2  -0.0328, 0.0328 

( )12

1 , 
( )23

1 , 
( )13

2  0.0328, -0.0978, -0.0978 

1 , 2  0.0129, 0.0129 

 

When we study the models of the pyrazine molecule, the second diabatic (electronic) state is 

initially occupied, and the nuclear variables are sampled from the Wigner distribution of the 

vibrational ground state: 

 ( ) ( )2 2

1

ex, p
N

k kW

k

R P
=

 
 − + 

 
R P  . (S27) 

When we test the LVCM of Cr(CO)5, the second diabatic (electronic) state is occupied at the 

beginning.  The initial nuclear wavefunction leads to the corresponding Wigner distribution 
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2
2

2 2

2
1

exp 2
2

,
k k

k k

k k

W

R r
P 

=

  −
   − +    
R P  . (S28) 

where 1 0r = , 2 14.3514r = , 1 0.4501 =  and 2 0.4586 = .  In simulations of LVCMs, trajectories 

are evolved in the adiabatic representation, where the kinematic nuclear momentum  kP  (or 

equivalently the mapping diabatic nuclear momentum) is used.  The canonical (mass-weighted) 

nuclear coordinate and its corresponding canonical momentum   ,  k kR P  in the diabatic 

representation can be obtained from the dimensionless nuclear variables  ,  k kR P  by the relation 
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 , /k k k k k kR R P P = =  . (S29) 

We study both the electronic and nuclear dynamics of the LVCMs.  The former is shown by 

the time-dependent electronic population, and the latter is demonstrated by the mean value of the 

nuclear coordinate and that of the nuclear momentum as functions of time: 

 ( )
ˆ ˆˆˆTr k

i i t

k

Ht HR R et e − 
 =  , (S30) 

 ( )
ˆ ˆˆˆTr k

i i t

k

Ht HP P et e − 
 =  . (S31) 

Here ̂  denotes the initial density operator for both nuclear and electronic DOFs.  For simplicity, 

we only demonstrate one nuclear DOF for each model. The results of the normal mode 6av  of 

pyrazine models (that is, the second normal mode in Tables S2-S3 with the corresponding 

frequency 2 0.074 =  eV) and those of the second normal mode of the LVCM of Cr(CO)5 are 

presented. We perform MCTDH calculations for two pyrazine models by using the Heidelberg 

MCTDH package (V8.5)24, while the MCTDH results of the Cr(CO)5 model are taken from ref 23. 

 

S1-G: Additional Details in the Simulations 

In the tests of all trajectory-based methods, independent trajectories evolve in the adiabatic 

representation.  When we study the spin-boson models, FMO model, atom-in-cavity models, SF 

model, three-state photodissociation models, and LVCMs, we have to perform the adiabatic-to-

diabatic transformation to yield results for the time correlation functions in the diabatic 

representation, because numerically exact results are available only in the diabatic representation.  

We find that a significantly smaller time step size is required for several models (e.g., FMO and 

SF models).  A more efficient approach is to evolve the electronic DOFs in the diabatic 
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representation while concurrently evolving the nuclear DOFs in the adiabatic representation. (See 

details of the integrator of NAF in Section S3.)  The time step size and the number of trajectories 

for each model are listed in Table S5. 

 

Table S5. The time step and the number of trajectories for each model. 

Model Time step size Number of trajectories 

Spin-boson models 0.01 a.u. 105 

FMO model 0.1 fs 105 

Atom-in-cavity models 0.1 a.u. 105 

SF model 0.001 fs 24000 

3-state photodissociation 

models 
0.01 fs 105 

Tully models 0.01 fs 105 

Asymmetric SAC model 0.01 fs 105 

LVCMs 0.01 fs 105 
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S2. Additional Results for Models in the Main Text 

 

Figure S1. Results of the scattering probability of the three Tully models as a function of the initial momentum 

for each channel. Panels (a), (c), and (e) denote the transmission probabilities on the adiabatic ground state of 

the SAC, DAC, and ECR models, respectively. Panels (b), (d), and (f) are the same as Panels (a), (c), and (e), 

respectively, but for the transmission probabilities on adiabatic excited states.  Panels (g)-(h) are the same as 

Panels (e)-(f), respectively, but for the reflection probabilities of the ECR model.  Black points: Exact results by 

DVR.  Cyan solid lines: Ehrenfest dynamics.  Orange short-dashed lines: FSSH.  Purple long-dashed lines: NAF-

Ehrenfest. Red and green solid lines: NAF ( 0.366 = ) and NAF ( 0.5 = ), respectively.  
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Figure S2. Results of the scattering probability of the asymmetric SAC model as a function of the initial 

momentum for each channel.  Panels (a)-(b) denote the transmission probabilities on the adiabatic ground and 

excited states, respectively.  Panels (c)-(d) are the same as Panels (a)-(b), respectively, but for the reflection 

probabilities. Black points: Exact results by DVR. Cyan solid lines: Ehrenfest dynamics. Orange short-dashed 

lines: FSSH. Purple long-dashed lines: NAF-Ehrenfest. Red and green solid lines: NAF with 0.366 =  and 

NAF with 0.5 = , respectively. 
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Figure S3. Nuclear momentum distribution of the ECR model after scattering. Panels (a)-(b) denote the results 

of the initial momentum 0 20P =  a.u. and 0 40P =  a.u., respectively. Black solid lines with black circles: Exact 

results by DVR. Cyan long-dashed lines: Ehrenfest dynamics. Orange short-dashed lines: FSSH. Purple solid 

lines: NAF-Ehrenfest. Red long-dashed lines: NAF ( 0.366 = ). Green short-dashed lines: NAF ( 0.5 = ).  
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Figure S4. Nuclear momentum distribution of the asymmetric SAC model after scattering. Panels (a)-(b) denote 

the results of the initial momentum 0 10.9P =  a.u. and 0 19.9P =  a.u., respectively. Black solid lines with 

black circles: Exact results by DVR. Cyan long-dashed lines: Ehrenfest dynamics. Orange short-dashed lines: 

FSSH. Purple short-dashed lines: NAF-Ehrenfest. Red long-dashed lines: NAF ( 0.366 = ). Green short-

dashed lines: NAF ( 0.5 = ). 
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Figure S5. Results for spin-boson models which are identical to Panels (a)-(d) of Figure 1 in the main text but 

with a higher temperature 0.25 = . 
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S3. Integrator of NAF for a Finite Time Step 

The integrator of the EOMs of NAF is described as follows. 

1. Update the nuclear kinematic momentum (equivalently, the diabatic nuclear momentum) 

within a half time step 2t  

 ( ) ( )/2 ( ) ( ) ( ) ( )
2oldt t j t klk t l t lk t

k

t

l

t
E tE E 



+

 



− + − 

 
  RP P R R R d R  . (S32) 

2. Update the nuclear coordinate within a full-time step t  

 1

/2tt tt t t−

 + + + R R M P  . (S33) 

3. Update phase variables of electronic DOFs within a full-time step t  according to 

 /2( , ; )t t t tt t tt+ + + g U R P g  . (S34) 

 / /

†

2 2( , ; ) ( , ; )t t tt t t t t tt t t t+ +  + + +  Γ U R P Γ U R P  . (S35) 

4. Determine a new occupied state newj  based on the statements in the main text and rescale P  

if dnew olj j ， 

 ( )( ) ( )1

/2 /2 /2 /2 /2, , , ( ) / / 2
new

T

t t NAF t t t t j t tt t t t t t ttt tH E+ + + + + + + + +

−

        −P P R P x p R P PM  .  (S36) 

If ( )/2, , , ( )
newt tNAF t t t t t tt j tH E   + + + + +R P x p R , the switching of the adiabatic nuclear force 

component is frustrated.  In such a case we keep dnew olj j=  and the rescaling step eq (S36) is 

skipped. 

5. Update the nuclear kinematic momentum within the other half time step 2t  
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( ) ( )/2 ( ) ( ) ( ) ( )
2newt t t t tt t j t klk t l t k

k l

tl t

t
tE tE E     + + + + + +





 
  − + +− 




 


RP P R R R d R  . (S37) 

6. Rescale the nuclear kinematic momentum P  again to satisfy the mapping energy 

conservation 

 ( )( ) ( )0

1

0 0 0, , , ( ) / / 2
new

T

t tt t tNAF j t t tt tH E −

   + + + + +− MP P R P x p R P P   . (S38) 

If ( )0 0 0 0, , , ( )
newNAF j t tH E +R P x p R , it indicates that the time step size t  is relatively large 

for the integrator from time t to time t t+  .  In such a case, one should then choose a smaller time 

step size t  and repeat Steps 1-6 for the update of ( ), , , tt t t t tt t+ + + +   R P x p  from ( ), , ,t t t tR P x p .  

The time step size t  should be adjusted in the region where the sum of adiabatic and nonadiabatic 

nuclear force terms is large. 

As described in Section S1-G, it is sometimes more efficient to evolve the electronic mapping 

variables in the diabatic representation, where Step 3 of the integrator above is replaced by 

 ( )tt t T Rg g  . (S39) 

 ( ) ( )†

tt t tΓ ΓT R T R  . (S40) 

 ( )expt ttt tti ++  −  g R gV  . (S41) 

 ( ) ( )exp expt t tt t ttt ti i++ +         − V RΓV RΓ  . (S42) 

 ( )†

t tt t t t+ + + T Rg g  . (S43) 

 ( ) ( )†

t t t t t t t t+ + + +T R T RΓ Γ  . (S44) 

Here ( )T R  is the diabatic-to-adiabatic transformation matrix with elements ( ) ( )|nm mT n =R R .  

Similarly, such a strategy can be applied to Ehrenfest dynamics and FSSH. In the diabatic-to-
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adiabatic transformation, especially in the coupling region, we carefully trace both the sign and 

order of the adiabatic basis ( )n t t +R  based on the values from the previous time step.  This 

guarantees that the value of ( ) ( )| nmn t t m t  + −R R  remains small enough to make the adiabatic 

basis change smoothly. 

S4. Comparisons of NAF and NAF(S) Results 

We demonstrate the results of NAF with a stochastically selected single-state adiabatic 

nuclear force component, denoted as NAF(S).  In NAF(S), the probability of choosing the single-

state adiabatic nuclear force contributed by the j-th (adiabatic) state at time t  is ( ) ( )
1

/
F

jj kk

k

t t 
=

 . 

Figures S6-S8 illustrate comparisons of NAF and NAF(S) results for the spin-boson models, FMO 

model, and SF model, respectively.  The overall performance of NAF(S) for these models is similar 

to that of NAF. 
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Figure S6. Each panel is the same as that in Figure 1 of the main text, but with the comparison between NAF 

and NAF(S). Black points: Exact results produced by eHEOM. Purple, red, and green solid lines: NAF-Ehrenfest, 

NAF( 0.366 = ), and NAF ( 0.5 = ), respectively. Blue, magenta, and brown dashed lines: NAF(S)-

Ehrenfest, NAF(S) ( 0.366 = ) and NAF(S) ( 0.5 = ), respectively. 
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Figure S7. Similar to Figure 2 in the main text, but Panels (a1)-(a6) represent the results of NAF ( 0.261 = ), 

NAF ( 0.5 = ), NAF-Ehrenfest, NAF(S) ( 0.261 = ), NAF(S) ( 0.5 = ) and NAF(S)-Ehrenfest, respectively. 

Panel (b) is the same as Panel (a) but for the coherence terms. 
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Figure S8. Similar to Figure 4 of the main text, but Panels (a)-(f) represent the results of NAF ( 0.333 = ), 

NAF ( 0.5 = ), NAF-Ehrenfest, NAF(S) ( 0.333 = ), NAF(S) ( 0.5 = ) and NAF(S)-Ehrenfest, 

respectively. 
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S5. Comparisons of NAF and CMMcv Results 

Figure S9 compares NAF to CMMcv10 for the 3-state photodissociation models.  In the 

CMMcv simulation, a hard wall potential ( )
0, 0

, 0

R
U R

R


= 


 is added to the original Morse 

potential energy surfaces.  That is, when 0R   and 0P  , we let P P −  for each trajectory.  

The hard wall potential is to prevent the bond length R  from being negative, which is unphysical.  

The strategy was employed in our previous CMM/CMMcv investigation of the same models10.  In 

the NAF simulation, it is not necessary to add such a hard wall potential. 
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Figure S9. Similar to Figure 5 in the main text, but the first to fourth columns in Panels (a)-(c) represent the 

results of NAF ( 0.333 = ), NAF ( 0.5 = ), CMMcv ( 0.333 = ), and CMMcv ( 0.5 = ), respectively.  In 

Panels (d)-(f), the blue and pink dashed lines denote the results of CMMcv ( 0.333 = ) and  CMMcv ( 0.5 = ), 

respectively.  A hard wall potential is applied in the CMMcv simulation to avoid the negative bond length for 

the three models. 
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S6. Comparisons of GDTWA and NAF-GDTWA Results 

As mentioned in the main text, in ref 25 we show that the mathematical structure of the 

mapping constraint (coordinate-momentum) phase space (CPS) of our recent work3, 10, 26-29 is 

related to the quotient space U( ) / U( )F F r− , namely the complex Stiefel manifold25, 30, 31.  Here, 

1 r F  .  It is straightforward to show the phase space of the generalized discrete truncated 

Wigner approximation (GDTWA)32 developed by Lang et al. can be a discrete subset of the 

manifold U( ) / U( 2)F F − .  The electronic mapping kernel of GDTWA follows the form given in 

eq (7) of the main text and is identical to its inverse mapping kernel.  The initial condition of the 

electronic mapping kernel reads 

 1

1

1

1
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0 0 0 0
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0 0 0 0
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 , (S45) 

where occj  denotes the index of the initially occupied state, and each ( )1, ,n n F =  variable is 

uniformly sampled from  / 4,  3 / 4,  5 / 4,  7 / 4    .  When we use the EOMs of NAF with the 

initial condition and expression for the evaluation of time-dependent (electronic) properties of 

GDTWA, we obtain the NAF-GDTWA method.  Figures S10-S12 present comparisons of 

GDTWA to NAF-GDTWA for the 3-state photodissociation models, LVCM of Cr(CO)5 and FMO 

model, respectively. 
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Figure S10. Similar to Figure 5 in the main text, but the left and right columns in Panels (a)-(c) represent the 

results of GDTWA and NAF-GDTWA, respectively. In Panels (d)-(f), the red and green dashed lines represent 

the GDTWA and NAF-GDTWA results, respectively.  A hard wall potential is applied in the GDTWA 

simulation to avoid the negative bond length for the three models.  Such a strategy is not necessary in the NAF-

GDTWA simulation. 
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Figure S11.  Similar to Figure 7 in the main text, but the red and green solid lines represent the GDTWA and 

NAF-GDTWA results, respectively. 
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Figure S12.  Similar to Figure 2 in the main text, but Panels (a1)-(a2) represent the GDTWA and NAF-GDTWA 

results, respectively.  Panel (b) is the same as Panel (a) but for the coherence terms. 
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S7. Comparisons of NAF, FS-NAF, and FSSH Results 

In this section, we introduce the Fewest Switches NAF (FS-NAF) approach, where we use 

the EOMs of NAF with the initial condition and expression for the evaluation of time-dependent 

properties of the FSSH method.  It incorporates the nonadiabatic nuclear force term in the EOMs 

for nuclear variables of the FSSH algorithm17, 33.  The strategy of nuclear momentum rescaling is 

also employed to ensure energy conservation.  The algorithm of FS-NAF reads: 

1. The initial values of nuclear variables  0 0,R P  are sampled from the corresponding Wigner 

distribution.  When the occj -th adiabatic state of the system ( )0occj
 R  is initially occupied, 

the initial electronic amplitude vector c  is  
occ

i

n j nc e = , where   is uniformly sampled in 

[0, 2 ) .  The index of the adiabatic state that offers the single-state adiabatic nuclear force 

component for FS-NAF is set as occj j= .   

If the occj -th adiabatic state of the system occj  is initially occupied instead, the initial 

electronic amplitude vector c  in the adiabatic representation is obtained by the diabatic-to-

adiabatic transformation  ( )†

0=c T R c  with  
occ

i

n j nc e = .  The index of the adiabatic state 

that provides the single-state adiabatic nuclear force component, j , is randomly sampled from 

 , ,1k F=  according to the probability ( )
2

0occj kT R  as suggested in ref 34. 

2. Calculate the initial energy ( )1

0 0 00 / 2T

jH E−= +P M P R .  Set time 0t = .  

3. The reduced electronic density matrix in the adiabatic representation is 

 
( )

( ) ( )*

,   

,   

nj

nm

n m

n m
t

c c n mt t




=
= 


 , (S46) 
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while the corresponding electronic density matrix in the diabatic representation reads 

 ( ) ( ) ( ) ( )†

t tt t=ρ T R ρ T R  . (S47) 

4. Update the nuclear kinematic momentum (equivalently, the diabatic nuclear momentum) 

within a half time step 2t  

 ( ) ( ) ( )( ) ( ) ( )
/2 +

2

F

t t t j t n t m t mn t nm

n m

t
E E E t+



 
  −  −  

 
RP P R R R d R  . (S48) 

5. Update the nuclear coordinate within a full-time step t  

 1

/2tt ttt t−

 + + + R R M P  . (S49) 

6. Update the electronic amplitude within a full-time step t  according to 

 ( ) ( )/2( , ; )t t tt ttt t  + + + U R Pc c  . (S50) 

7. Evaluate the switching probability as the hopping probability of the FSSH algorithm: 

 ( ) ( ) ( )

( )

* 1

/ 2

2

0,                                                                                     

2Im
max ,0 ,            

| |

k j t t jk t tj k

j

j k

ic ct t t t
t j k

c t t


−

+ +→

=
   = +  +       +   

M P d R  .   (S51) 

If the switching probability j k →  is greater than 1, we set 1j k → = .  Generate a uniform random 

number   in  0,1 .  If   falls in the region, 
1

1 1

 ,
k k

j n j n

n n

 
−

→ →

= =

 
 
 
  , then we try the switching 

j k→ , i.e., the electronic state that contributes to the adiabatic nuclear force component is 

switched to State k  from State j . The nuclear kinematic momentum (equivalently, the 

diabatic nuclear momentum) is adjusted along the direction of the nonadiabatic coupling 

vector as done in FSSH, 

 

( )

( )( ) ( )( ) ( )

1

/ 2 / 2

1

/ 2 / 2

1

2

1

2

T

t t t t j t t

T

t t jk t t t t jk t t k t t

E

E 

−

+ + +

−

+ + + + +

+

= + + +

P M P R

P d R M P d R R
 . (S52) 
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If   of eq (S52) has no real solution, the switching of the adiabatic nuclear force component 

is frustrated and such a switching event is abandoned.  Otherwise, we set j k=  and adjust 

the nuclear kinematic momentum ( )/ 2 / 2 mint t t t jk+ + +P P d R , where min  is the root of eq 

(S52) with the smaller absolute value. 

8. Update the nuclear kinematic momentum within the other half time step 2t  

( ) ( ) ( )( ) ( ) ( ) ( )

/2

*+
2

t t t t

F

j t t n t t m t t mn t t n m

n m

t
E E E c ct t t t

+ +

+ + + +



 −

 
  − +  +   

 
R

P P

R R R d R
. (S53) 

9. Rescale the nuclear kinematic momentum to satisfy the energy conservation 

 ( ) ( )1

0 ( ) / / 2t t t t t t t tj t t

TH E −

+ + + + +− R P PMP P . (S54) 

If 0 ( )t tjH E + R , it suggests that the time step size t  is relatively large for the integrator 

from time t  to time t t+  .  In such a case, one should then choose a smaller time step size 

t  and repeat Steps 4-8 for the update of ( )( ), ,t tt t t t + + + R P c  from ( )( ), ,t t tR P c .  The 

time step size t  should be adjusted in the region where the sum of adiabatic and 

nonadiabatic nuclear force terms is large. 

10. Update the time variable, t t t + .  Repeat Steps 3-9 until the evolution of the trajectory 

ends. 

If one removes the nonadiabatic nuclear force term in the RHS of eq (S48) and that of eq 

(S53), and skips Step 9, then the algorithm above becomes the conventional FSSH algorithm. 
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Figures S13-S15 illustrate comparisons of FS-NAF, FSSH, and NAF results for spin-boson 

models, FMO model, and SF model, respectively.  It is evident that FS-NAF systematically 

improves over FSSH. 

 

Figure S13. Each panel is identical to that in Figure 1 of the main text, but for comparison among FSSH, NAF, 

and FS-NAF. Black points: Exact results produced by eHEOM.  Orange short-dashed lines: FSSH. Red and 

green solid lines: NAF ( 0.366 = ) and NAF ( 0.5 = ), respectively. Blue solid lines: FS-NAF. 
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Figure S14. Similar to Figure 2 of the main text, but Panels (a1)-(a4) represent the results of FS-NAF, FSSH, 

NAF ( 0.261 = ), and NAF ( 0.5 = ), respectively. Panel (b) is the same as Panel (a) but for the coherence 

terms. 
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Figure S15. Similar to Figure 4 of the main text, but Panels (a)-(d) represent the results of FS-NAF, FSSH, NAF 

( 0.333 = ), and NAF ( 0.5 = ), respectively. 
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S8. Details of Ehrenfest Dynamics 

We describe the details of conventional Ehrenfest dynamics for nonadiabatic transitions.  We 

use c  to denote the electronic amplitude vector in the diabatic representation, whose initial 

condition is  
occ

i

n j nc e = , where occj  is the index of the initially occupied diabatic state and   

can be randomly sampled from [0, 2 ) .  The electronic amplitude in the adiabatic representation 

is ( )†=c T R c . The nuclear DOFs are sampled from the Wigner distribution of the corresponding 

initial nuclear density operator.  The EOMs of Ehrenfest dynamics in the diabatic representation 

read 

 ( )i= −c V R c  . (S55) 

 
1−=R M P  . (S56) 

 ( ) *

, 1

F

nm n m

n m

V c c
=

= −  RP R  . (S57) 

while in the adiabatic representation read 

 
( ) ( )eff ,i= −c V R P c  . (S58) 

 
1−=R M P  . (S59) 

 ( ) ( ) ( )( ) ( )
2 *

1

F F

n n n m mn n m

n n m

E c E E c c
= 

 = −  − −  R
P R R R d R  . (S60) 

The electronic density matrix is †
cc in the diabatic representation and †

cc  in the adiabatic 

representation for each trajectory, respectively.  Provided that the electronic diabatic basis sets are 

well-defined, it is trivial to show that the force in the RHS of eq (S57) is equivalent to that of the 

RHS of eq (S60) by applying the covariance relation under the diabatic-to-adiabatic transformation 

(as explicitly discussed in Section 4.1 of ref 27).  Nuclear dynamics is then independent of the 
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representation of the electronic basis sets.  In eq (S60) P  is the diabatic nuclear momentum, or 

equivalently the nuclear kinematic momentum in the adiabatic representation.  One can follow 

Section 4.1 of ref 27 and Appendix 2 of the Supporting Information of ref 27 to show the relation.  

An earlier discussion is available in ref 35. 

The nuclear force in the RHS of eq (S57) or eq (S60) is the expectation value weighted by 

the electronic density matrix.  It is in the spirit of the Ehrenfest theorem36, 
d ˆ ˆ
d

V
t

= − RP  in 

quantum mechanics.  Early examples of the application of the Ehrenfest theorem to chemical 

dynamics include refs 37-40.  It is not clear to us who first employed the Ehrenfest theorem for 

electronically nonadiabatic transition processes though. 
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